Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Open Forum Infect Dis ; 11(2): ofae073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390463

RESUMO

Background: Longitudinal data on the detectability of monkeypox virus (MPXV) genetic material in different specimen types are scarce. Methods: We describe MPXV-specific polymerase chain reaction (PCR) results from adults with confirmed mpox infection from Toronto, Canada, including a cohort undergoing weekly collection of specimens from multiple anatomic sites until 1 week after skin lesions had fully healed. We quantified the time from symptom onset to resolution of detectable viral DNA (computed tomography [Ct] ≥ 35) by modeling exponential decay in Ct value as a function of illness day for each site, censoring at the time of tecovirimat initiation. Results: Among 64 men who have sex with men, the median (interquartile range [IQR]) age was 39 (32.75-45.25) years, and 49% had HIV. Twenty received tecovirimat. Viral DNA was detectable (Ct < 35) at baseline in 74% of genital/buttock/perianal skin swabs, 56% of other skin swabs, 44% of rectal swabs, 37% of throat swabs, 27% of urine, 26% of nasopharyngeal swabs, and 8% of semen samples. The median time to resolution of detectable DNA (IQR) was longest for genital/buttock/perianal skin and other skin swabs at 30.0 (23.0-47.9) and 22.4 (16.6-29.4) days, respectively, and shortest for nasopharyngeal swabs and semen at 0 (0-12.1) and 0 (0-0) days, respectively. We did not observe an effect of tecovirimat on the rate of decay in viral DNA detectability in any specimen type (all P > .05). Conclusions: MPXV DNA detectability varies by specimen type and persists for over 3-4 weeks in skin specimens. The rate of decay did not differ by tecovirimat use in this nonrandomized study.

2.
Am J Clin Nutr ; 119(2): 485-495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309831

RESUMO

BACKGROUND: There is limited understanding of the impact of coronavirus disease 2019 (COVID-19) infection and vaccination type and interval on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human milk antibodies and their neutralizing capacity. OBJECTIVES: These cohort studies aimed to determine the presence of antibodies and live virus neutralizing capacity in milk from females infected with COVID-19, unexposed milk bank donors, and vaccinated females and examine impacts of vaccine interval and type. METHODS: Milk was collected from participants infected with COVID-19 during pregnancy or lactation (Cohort-1) and milk bank donors (Cohort-2) from March 2020-July 2021 at 3 sequential 4-wk intervals and COVID-19 vaccinated participants with varying dose intervals (Cohort-3) (January-October 2021). Cohort-1 and Cohort-3 were recruited from Sinai Health (patients) and through social media. Cohort-2 included Ontario Milk Bank donors. Milk was examined for SARS-CoV-2 antibodies and live virus neutralization. RESULTS: Of females with COVID-19, 53% (Cohort-1, n = 55) had anti-SARS-CoV-2 IgA antibodies in ≥1 milk sample. IgA+ samples (40%) were more likely neutralizing than IgA- samples (odds ratio [OR]: 2.18; 95% confidence interval [CI]: 1.03, 4.60; P = 0.04); however, 25% of IgA- samples were neutralizing. Both IgA positivity and neutralization decreased ∼6 mo after symptom onset (0-100 compared with 201+ d: IgA OR: 14.30; 95% CI: 1.08, 189.89; P = 0.04; neutralizing OR: 4.30; 95% CI: 1.55, 11.89; P = 0.005). Among milk bank donors (Cohort-2, n = 373), 4.3% had IgA antibodies; 23% of IgA+ samples were neutralizing. Vaccination (Cohort-3, n = 60) with mRNA-1273 and shorter vaccine intervals (3 to <6 wk) resulted in higher IgA and IgG than BNT162b2 (P < 0.04) and longer intervals (6 to <16 wk) (P≤0.02), respectively. Neutralizing capacity increased postvaccination (P = 0.04) but was not associated with antibody positivity. CONCLUSIONS: SARS-CoV-2 infection and vaccination (type and interval) impacted milk antibodies; however, antibody presence did not consistently predict live virus neutralization. Although human milk is unequivocally the best way to nourish infants, guidance on protection to infants following maternal infection/vaccination may require more nuanced messaging. This study was registered at clinicaltrials.gov as NCT04453969 and NCT04453982.


Assuntos
COVID-19 , Leite Humano , Feminino , Lactente , Gravidez , Humanos , SARS-CoV-2 , Vacina BNT162 , Estudos Prospectivos , COVID-19/prevenção & controle , Vacinação , Imunoglobulina A , Anticorpos Antivirais
3.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493438

RESUMO

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2 , Vacinas contra COVID-19 , Hidróxido de Alumínio , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Anticorpos Antivirais , Anticorpos Neutralizantes , Mamíferos
4.
PLoS Pathog ; 19(3): e1011249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961851

RESUMO

Pasteurella multocida can infect a multitude of wild and domesticated animals, with infections in cattle resulting in hemorrhagic septicemia (HS) or contributing to bovine respiratory disease (BRD) complex. Current cattle vaccines against P. multocida consist of inactivated bacteria, which only offer limited and serogroup specific protection. Here, we describe a newly identified surface lipoprotein, PmSLP, that is present in nearly all annotated P. multocida strains isolated from cattle. Bovine associated variants span three of the four identified phylogenetic clusters, with PmSLP-1 and PmSLP-2 being restricted to BRD associated isolates and PmSLP-3 being restricted to isolates associated with HS. Recombinantly expressed, soluble PmSLP-1 (BRD-PmSLP) and PmSLP-3 (HS-PmSLP) vaccines were both able to provide full protection in a mouse sepsis model against the matched P. multocida strain, however no cross-protection and minimal serum IgG cross-reactivity was identified. Full protection against both challenge strains was achieved with a bivalent vaccine containing both BRD-PmSLP and HS-PmSLP, with serum IgG from immunized mice being highly reactive to both variants. Year-long stability studies with lyophilized antigen stored under various temperatures show no appreciable difference in biophysical properties or loss of efficacy in the mouse challenge model. PmSLP-1 and PmSLP-3 vaccines were each evaluated for immunogenicity in two independent cattle trials involving animals of different age ranges and breeds. In all four trials, vaccination with PmSLP resulted in an increase in antigen specific serum IgG over baseline. In a blinded cattle challenge study with a recently isolated HS strain, the matched HS-PmSLP vaccine showed strong efficacy (75-87.5% survival compared to 0% in the control group). Together, these data suggest that cattle vaccines composed of PmSLP antigens can be a practical and effective solution for preventing HS and BRD related P. multocida infections.


Assuntos
Septicemia Hemorrágica , Infecções por Pasteurella , Pasteurella multocida , Bovinos , Animais , Camundongos , Filogenia , Vacinologia , Vacinas Bacterianas , Septicemia Hemorrágica/microbiologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Modelos Animais de Doenças , Imunoglobulina G , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária
5.
Elife ; 122023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36727860

RESUMO

Every decision that we make involves a conflict between exploiting our current knowledge of an action's value or exploring alternative courses of action that might lead to a better, or worse outcome. The sub-cortical nuclei that make up the basal ganglia have been proposed as a neural circuit that may contribute to resolving this explore-exploit 'dilemma'. To test this hypothesis, we examined the effects of neuromodulating the basal ganglia's output nucleus, the globus pallidus interna, in patients who had undergone deep brain stimulation (DBS) for isolated dystonia. Neuromodulation enhanced the number of exploratory choices to the lower value option in a two-armed bandit probabilistic reversal-learning task. Enhanced exploration was explained by a reduction in the rate of evidence accumulation (drift rate) in a reinforcement learning drift diffusion model. We estimated the functional connectivity profile between the stimulating DBS electrode and the rest of the brain using a normative functional connectome derived from heathy controls. Variation in the extent of neuromodulation induced exploration between patients was associated with functional connectivity from the stimulation electrode site to a distributed brain functional network. We conclude that the basal ganglia's output nucleus, the globus pallidus interna, can adaptively modify decision choice when faced with the dilemma to explore or exploit.


Assuntos
Estimulação Encefálica Profunda , Distonia , Humanos , Globo Pálido/fisiologia , Gânglios da Base , Encéfalo
6.
Heliyon ; 9(1): e12744, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36597481

RESUMO

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

7.
J Biol Chem ; 298(10): 102448, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063991

RESUMO

Mapping the self-organization and spatial distribution of membrane proteins is key to understanding their function. Developing methods that can provide insight into correlations between membrane protein colocalization and interactions is challenging. We report here on a correlated stochastic optical reconstruction microscopy/homoFRET imaging approach for resolving the nanoscale distribution and oligomeric state of membrane proteins. Using live cell homoFRET imaging of carcinoembryonic antigen-related cellular adhesion molecule 1, a cell-surface receptor known to exist in a complex equilibrium between monomer and dimer/oligomer states, we revealed highly heterogeneous diffraction-limited structures on the surface of HeLa cells. Furthermore, correlated super-resolved stochastic optical reconstruction microscopy imaging showed that these structures comprised a complex mixture and spatial distribution of self-associated carcinoembryonic antigen-related cellular adhesion molecule 1 molecules. In conclusion, this correlated approach provides a compelling strategy for addressing challenging questions about the interplay between membrane protein concentration, distribution, interaction, clustering, and function.


Assuntos
Microscopia , Humanos , Células HeLa , Proteínas de Membrana , Microscopia/métodos , Imagem Óptica , Técnicas Citológicas
8.
Retrovirology ; 19(1): 18, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986377

RESUMO

BACKGROUND: The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS: Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS: The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS: These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.


Identifying cellular factors that regulate HIV-1 RNA processing provides important insights into novel strategies to control this infection. Different members of the SR kinase family have distinct roles in regulating virus expression because they affect distinct steps of transcription/RNA processing. We identify inhibitors of these kinases that suppress HIV-1 gene expression and replication in multiple assay systems at nanomolar concentrations with limited or no cytotoxicity. Our results highlight the therapeutic potential of targeting the post-integration stage of the HIV-1 lifecycle to selectively enhance or reverse provirus latency. A greater understanding of the molecular mechanisms underlying the effects observed will facilitate the development of more targeted approaches to modulate HIV-1 latency on the path toward a "functional" cure for this infection.


Assuntos
HIV-1 , Processamento Alternativo , Expressão Gênica , HIV-1/fisiologia , Inibidores de Proteínas Quinases/farmacologia , RNA Viral/genética , Latência Viral
9.
Gut Microbes ; 14(1): 2110639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36036242

RESUMO

The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear. Here, we seek for novel MAMP-PRR interactions involved in the beneficial effect of the commensal bacterium Akkermansia muciniphila on intestinal homeostasis. We show that A. muciniphila strongly activates NF-κB in IECs by releasing one or more potent activating metabolites into the microenvironment. By using drugs, chemical and gene-editing tools, we found that the released metabolite(s) enter(s) epithelial cells and activate(s) NF-κB via an ALPK1, TIFA and TRAF6-dependent pathway. Furthermore, we show that the released molecule has the biological characteristics of the ALPK1 ligand ADP-heptose. Finally, we show that A. muciniphila induces the expression of the MUC2, BIRC3 and TNFAIP3 genes involved in the maintenance of the intestinal barrier function and that this process is dependent on TIFA. Altogether, our data strongly suggest that the commensal A. muciniphila promotes intestinal homeostasis by activating the ALPK1/TIFA/TRAF6 axis, an innate immune pathway exclusively described so far in the context of Gram-negative bacterial infections.


Assuntos
Microbioma Gastrointestinal , NF-kappa B , Difosfato de Adenosina , Akkermansia , Heptoses , Imunidade Inata , Fator 6 Associado a Receptor de TNF , Verrucomicrobia
10.
NPJ Vaccines ; 7(1): 49, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474311

RESUMO

The SARS-CoV-2 pandemic is an ongoing threat to global health, and wide-scale vaccination is an efficient method to reduce morbidity and mortality. We designed and evaluated two DNA plasmid vaccines, based on the pIDV-II system, expressing the SARS-CoV-2 spike gene, with or without an immunogenic peptide, in mice, and in a Syrian hamster model of infection. Both vaccines demonstrated robust immunogenicity in BALB/c and C57BL/6 mice. Additionally, the shedding of infectious virus and the viral burden in the lungs was reduced in immunized hamsters. Moreover, high-titers of neutralizing antibodies with activity against multiple SARS-CoV-2 variants were generated in immunized animals. Vaccination also protected animals from weight loss during infection. Additionally, both vaccines were effective at reducing both pulmonary and extrapulmonary pathology in vaccinated animals. These data show the potential of a DNA vaccine for SARS-CoV-2 and suggest further investigation in large animal and human studies could be pursued.

11.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133979

RESUMO

IgA nephropathy (IgAN) is a leading cause of kidney failure, yet little is known about the immunopathogenesis of this disease. IgAN is characterized by deposition of IgA in the kidney glomeruli, but the source and stimulus for IgA production are not known. Clinical and experimental data suggest a role for aberrant immune responses to mucosal microbiota in IgAN, and in some countries with high disease prevalence, tonsillectomy is regarded as standard-of-care therapy. To evaluate the relationship between microbiota and mucosal immune responses, we characterized the tonsil microbiota in patients with IgAN versus nonrelated household-matched control group participants and identified increased carriage of the genus Neisseria and elevated Neisseria-targeted serum IgA in IgAN patients. We reverse-translated these findings in experimental IgAN driven by BAFF overexpression in BAFF-transgenic mice rendered susceptible to Neisseria infection by introduction of a humanized CEACAM-1 transgene (B × hC-Tg). Colonization of B × hC-Tg mice with Neisseria yielded augmented levels of systemic Neisseria-specific IgA. Using a custom ELISPOT assay, we discovered anti-Neisseria-specific IgA-secreting cells within the kidneys of these mice. These findings suggest a role for cytokine-driven aberrant mucosal immune responses to oropharyngeal pathobionts, such as Neisseria, in the immunopathogenesis of IgAN. Furthermore, in the presence of excess BAFF, pathobiont-specific IgA can be produced in situ within the kidney.


Assuntos
Glomerulonefrite por IGA , Microbiota , Animais , Humanos , Imunidade Humoral , Imunoglobulina A , Camundongos , Tonsila Palatina/patologia
12.
Cell Biosci ; 11(1): 202, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879865

RESUMO

BACKGROUND: The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. RESULTS: Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. CONCLUSION: Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.

13.
Nat Commun ; 12(1): 6270, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725337

RESUMO

Nutrient acquisition systems are often crucial for pathogen growth and survival during infection, and represent attractive therapeutic targets. Here, we study the protein machinery required for heme uptake in the opportunistic pathogen Acinetobacter baumannii. We show that the hemO locus, which includes a gene encoding the heme-degrading enzyme, is required for high-affinity heme acquisition from hemoglobin and serum albumin. The hemO locus includes a gene coding for a heme scavenger (HphA), which is secreted by a Slam protein. Furthermore, heme uptake is dependent on a TonB-dependent receptor (HphR), which is important for survival and/or dissemination into the vasculature in a mouse model of pulmonary infection. Our results indicate that A. baumannii uses a two-component receptor system for the acquisition of heme from host heme reservoirs.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Transporte Biológico , Feminino , Humanos , Camundongos Endogâmicos BALB C , Família Multigênica
14.
J Infect Dis ; 224(12 Suppl 2): S56-S63, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396410

RESUMO

While infection by Neisseria gonorrhoeae is often asymptomatic in women, undetected infections can ascend into the upper genital tract to elicit an inflammatory response that manifests as pelvic inflammatory disease, with the outcomes depending on the intensity and duration of inflammation and whether it is localized to the endometrial, fallopian tube, ovarian, and/or other tissues. This review examines the contribution of N. gonorrhoeae versus other potential causes of pelvic inflammatory disease by considering new insights gained through molecular, immunological, and microbiome-based analyses, and the current epidemiological burden of infection, with an aim to highlighting key areas for future study.


Assuntos
Infecções por Chlamydia/epidemiologia , Gonorreia/epidemiologia , Neisseria gonorrhoeae/isolamento & purificação , Doença Inflamatória Pélvica/epidemiologia , Infecções por Chlamydia/complicações , Endometrite/microbiologia , Endométrio/microbiologia , Endométrio/patologia , Tubas Uterinas/microbiologia , Feminino , Gonorreia/diagnóstico , Humanos , Doença Inflamatória Pélvica/diagnóstico , Doença Inflamatória Pélvica/microbiologia
15.
Pathogens ; 10(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34358056

RESUMO

Neisseria meningitidis causes a devastating invasive disease but is also a normal colonizer of the human nasopharynx. Due to the rapid progression of disease, the best tool to protect individuals against meningococcal infections is immunization. Clinical experience with polysaccharide conjugate vaccines has revealed that an ideal meningococcal vaccine must prevent both invasive disease and nasal colonization, which confers herd immunity. However, not all meningococcal vaccines are equal in their ability to prevent nasal colonization, for unknown reasons. Herein, we describe recent efforts to utilize humanized mouse models to understand the impact of different meningococcal vaccines on nasal colonization. These mice are susceptible to nasal colonization, and they become immune following live nasal infection or immunization with matched capsule-conjugate or protein-based vaccines, replicating findings from human work. We bring together insights regarding meningococcal colonization and immunity from clinical work with findings using humanized mouse models, providing new perspective into the different determinants of mucosal versus systemic immunity. Then, we use this as a framework to help focus future studies toward understanding key mechanistic aspects left unresolved, including the bacterial factors required for colonization and immune evasion, determinants of nasal mucosal protection, and characteristics of an ideal meningococcal vaccine.

16.
Am J Infect Control ; 49(10): 1227-1231, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34320409

RESUMO

BACKGROUND: The COVID-19 pandemic highlighted the need for evidence-based approaches to decontamination and reuse of N95 filtering facepiece respirators (FFRs). We sought to determine whether vapourized hydrogen peroxide (VHP) reduced SARS-CoV-2 bioburden on FFRs without compromising filtration efficiency. We also investigated coronavirus HCoV-229E as a surrogate for decontamination validation testing. METHODS: N95 FFRs were laced with SARS-CoV-2 or HCoV-229E and treated with VHP in a hospital reprocessing facility. After sterilization, viral burden was determined using viral outgrowth in a titration assay, and filtration efficiency of FFRs was tested against ATSM F2299 and NIOSH TEB-STP-APR-0059. RESULTS: Viable SARS-CoV-2 virus was not detected after VHP treatment. One replicate of the HCoV-229E laced FFRs yielded virus after processing. Unexpired N95 FFRs retained full filtration efficiency after VHP processing. Expired FFRs failed to meet design-specified filtration efficiency and therefore are unsuitable for reprocessing. DISCUSSION: In-hospital VHP is an effective decontaminant for SARS-CoV-2 on FFRs. Further, filtration efficiency of unexpired respirators is not affected by this decontamination process. CONCLUSIONS: VHP is effective in inactivating SARS-CoV-2 on FFRs without compromising filtration efficiency. HCoV-229E is a suitable surrogate for SARS-CoV-2 for disinfection studies.


Assuntos
COVID-19 , Coronavirus Humano 229E , Descontaminação , Desinfecção , Reutilização de Equipamento , Hospitais , Humanos , Peróxido de Hidrogênio/farmacologia , Respiradores N95 , Pandemias , SARS-CoV-2
17.
Nat Commun ; 12(1): 3661, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135340

RESUMO

SARS-CoV-2, the virus responsible for COVID-19, has caused a global pandemic. Antibodies can be powerful biotherapeutics to fight viral infections. Here, we use the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 × 10-14 M are achieved as a result of up to 10,000-fold potency enhancements compared to corresponding IgGs. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and IgG-like bioavailability. The MULTi-specific, multi-Affinity antiBODY (Multabody or MB) platform thus uniquely leverages binding avidity together with multi-specificity to deliver ultrapotent and broad neutralizers against SARS-CoV-2. The modularity of the platform also makes it relevant for rapid evaluation against other infectious diseases of global health importance. Neutralizing antibodies are a promising therapeutic for SARS-CoV-2.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Apoferritinas/química , Disponibilidade Biológica , Mapeamento de Epitopos , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Engenharia de Proteínas/métodos , Subunidades Proteicas/química , Glicoproteína da Espícula de Coronavírus/imunologia , Distribuição Tecidual
18.
mBio ; 12(3): e0072121, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34060328

RESUMO

The bacterium Neisseria gonorrhoeae (Ngo) is the main cause of the sexually transmitted infection gonorrhea. The global incidence of 87 million new Ngo infections each year, rising infection rates, and the emergence of Ngo strains that are resistant to all clinically recommended antibiotics have raised the specter of untreatable infections (M. Unemo, H. S. Seifert, E. W. Hook, III, S. Hawkes, et al., Nat Rev Dis Primers 5:79, 2019, https://doi.org/10.1038/s41572-019-0128-6). Given their abundance in symptomatic disease, neutrophils are central to both Ngo infection and consequent damage to host tissues. This article highlights present knowledge and the main open questions about Ngo-neutrophil interactions in immunity versus disease pathogenesis.


Assuntos
Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/patogenicidade , Neutrófilos/metabolismo , Gonorreia/microbiologia , Humanos , Neisseria gonorrhoeae/imunologia , Neutrófilos/imunologia
19.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450244

RESUMO

SARS-CoV-2, depends on host cell components for replication, therefore the identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection. Such host factors may be necessary for infection and replication of SARS-CoV-2 and, if druggable, presents an attractive strategy for anti-viral therapy. We performed genome wide CRISPR knockout screens in Vero E6 cells and 4 human cell lines including Calu-3, Caco-2, Hek293 and Huh7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while all other host genes identified were cell line specific including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, lipid metabolism, immune pathways and chromatin modulation. Notably, chromatin modulator genes KMT2C and KDM6A in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed. Overall, the network of host factors that have been identified will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate the development of host-directed therapies. IN BRIEFSARS-CoV-2, depends on host cell components for infection and replication. Genome-wide CRISPR screens were performed in multiple human cell lines to elucidate common host dependencies required for SARS-CoV-2 infection. Only ACE2, the cognate SARS-CoV-2 entry receptor, was common amongst cell lines, while all other host genes identified were cell line specific, several of which converged on pathways involved in cell signalling, lipid metabolism, immune pathways, and chromatin modulation. Overall, a network of host factors was identified that will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate productive targeting of host genes and pathways. HIGHLIGHTS- Genome-wide CRISPR screens for SARS-CoV-2 in multiple human cell lines - Identification of wide-ranging cell-type dependent genetic dependencies for SARS-CoV-2 infection - ACE2 is the only common host factor identified across different cell types

20.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439006

RESUMO

The COVID-19 pandemic has affected more than 120 million people and resulted in over 2.8 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all of the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. Here, we describe intranasal immunization of a COVID-19 vaccine delivered by a novel platform, the helper-dependent adenoviral (HD-Ad) vector. Since HD-Ad vectors are devoid of adenoviral coding sequences, they have a superior safety profile and a large cloning capacity for transgenes. The vaccine (HD-Ad_RBD) codes for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and intranasal immunization induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. As such, intranasal immunization based on the HD-Ad vector promises to provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...